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Abstract

The biggest single obstacle to building effective
augmented reality (AR) systems is the lack of accurate
wide-area sensors for trackers that report the locations
and orientations of objects in an environment. Active
(sensor-emitter) tracking technologies require powered-
device installation, limiting their use to prepared areas
that are relatively free of natural or man-made
interference sources. Vision-based systems can use
passive landmarks, but they are more computationally
demanding and often exhibit erroneous behavior due to
occlusion or numerical instability. Inertial sensors are
completely passive, requiring no external devices or
targets, however, the drift rates in portable strapdown
configurations are too great for practical use. In this
paper, we present a hybrid approach to AR tracking that
integrates inertial and vision-based technologies. We
exploit the complementary nature of the two technologies
to compensate for the weaknesses in each component.
Analysis and experimental results demonstrate this
system's effectiveness.

1. Introduction

One of the key technological challenges for creating an
augmented reality (AR) is to maintain accurate
registration and tracking between real and computer-
generated objects. As users move their viewpoints, the
graphic virtual elements must remain aligned with the
observed 3D positions and orientations of real objects.
The alignment depends on accurately tracking the
viewing pose, relative to either the environment or the
annotated object(s) [15]. The tracked viewing pose
defines the virtual camera pose used to project 3D
graphics onto the real world image, so the tracking
accuracy directly determines the visually-perceived
accuracy of AR alignment and registration [1, 3].

A wealth of research, employing a variety of sensing
technologies, deals with motion tracking and registration as
required for augmented reality applications. Each
technology has unique strengths and weaknesses.  Tracking
technologies may be grouped into three categories: active-
target, passive-target, and inertial. Active-target systems
incorporate powered signal emitters and sensors placed in a
prepared and calibrated environment. Examples of such
systems use magnetic, optical, radio, and acoustic signals.
Passive-target systems use ambient or naturally occurring
signals.  Examples include compasses sensing the Earth’s
field and vision systems sensing intentionally placed
fiducials (e.g., circles, squares) or natural features. Inertial
systems are completely self contained, sensing physical
phenomena created by linear acceleration and angular
motion. See [1, 12] for more complete overviews of
tracking technologies.

Each tracking approach has limitations. The signal sensing
range of as well as man-made and natural sources of
interference limit active-target systems. Passive-target
systems are also subject to signal degradation, for example
poor lighting or proximity to steel in buildings can defeat
vision and compass systems. Inertial sensors measure
acceleration or motion rates, so their signals must be
integrated to produce position or orientation. Noise,
calibration error, and the gravity field impart errors on
these signals, producing accumulated position and
orientation drift. Position requires double integration of
linear acceleration, so the accumulation of position drift
grows as the square of elapsed time. Orientation only
requires a single integration of rotation rate, so the drift
accumulates linearly with elapsed time.

Hybrid systems attempt to compensate for the
shortcomings of each technology by using multiple
measurements to produce robust results. Active-target
magnetic and passive-target vision are combined in [18].
Inertial sensors and active-target vision are combined in
[2]. These and other examples are presented in Table 1.



Vision is commonly used for AR tracking and registration
[11, 13, 17, 20]. Unlike other active and passive
technologies, vision methods track camera pose directly
from the same imagery observed by the user. The tracked
pose (position and orientation) is often relative to the
object(s) of interest, not a sensor or emitter attached to the
environment. This has several advantages: a) tracking
may occur relative to moving objects; b) tracking
measurements made from the viewing position often
minimize the visual alignment error; and c) tracking
accuracy varies in proportion to the visual size (or range)
of the object(s) in the image [13]. The ability to both track
pose and manage residual errors is unique to vision,
however vision suffers from a notorious lack of
robustness and high computational expense. Combining
vision and inertial technologies offers one approach to
overcoming these problems.

Our long-term goal is to develop stable, accurate and
robust tracking methods for wide-area augmented
realities, especially in unprepared indoor or outdoor
environments. To achieve this, our laboratory explores a
range of related issues, including robust natural feature
detection and tracking methods [16], extendible vision
tracking with natural features and new-point estimation
techniques [14], and Kalman filters for pose estimation.
This work combines our methods for fiducial and natural
feature tracking with inertial gyroscope sensors to
produce a hybrid tracking system. The two basic tenets of
this work are:

1) Inertial gyro data can increase the robustness and
computing efficiency of a vision system by providing
a frame to frame prediction of camera orientation.

2) A vision system can correct for the accumulated drift
of an inertial system.

We consider the case when the scene range is many
multiples of the camera focal length.  Under this
condition, the 2D motion of image features is more
sensitive to camera rotation than camera translation.
People can rotate their heads very quickly, so in the case

of a head-mounted camera, the 2D image motions are often
mainly due to head rotation.  Vision pose tracking methods
often compute 2D-image motion.  Since these motions are
often due to rotation, inertial gyro sensors can aid the
vision system in tracking these motions.  Vision can in turn
correct the long term drift of the inertial sensors.

The remainder of the paper describes our approach and
method for camera and gyro calibration.  We also present
the results of our analysis and experiments.

2. Problem Statement
2.1 Inertial Tracking

The basic principles behind inertial sensors for determining
orientation and position rest on Newton's laws [19, 4]. Two
devices, gyroscopes and accelerometers, are contained in
an inertial sensor, affixed to the three perpendicular axes of
a body. Accelerometers measure linear acceleration vectors
with respect to the inertial reference frame. In order to
subtract the acceleration component due to gravity, the
orientation of the linear accelerometers must be accurately
known at all times. We focus on gyro devices that measure
rotation rate. The gyro outputs are integrated over time to
compute relative changes of orientation within the
reference frame. The integration of signal and error gives
rise to a linearly increasing orientation drift. Correction
techniques may include magnetic compass measurements
[7, 19].  However, compass signals are also noisy and
especially subject to errors induced by ferrous materials.
Indoor or urban compass signals are consequently
unreliable. We attempt vision-based corrections in the hope
that this approach will generalize to a wide range of
environments.

2.2 Error Sensitivity of Inertial AR Tracking
System

In this section, we analyze the error sensitivity of inertial
tracker to an augmented reality tracking system. The
inertial device we used for experiment is a three-degree of
freedom (3DOF) orientation tracker produced by
InterSense (Model IS-300). This device incorporates three
orthogonal gyroscopes to sense angular rates of rotation
along its three perpendicular axes. It also has sensors for
the gravity vector and a compass [7] to compensate for
gyro drift. The measured angular rates are integrated to
obtain the three orientation measurements (Yaw, Pitch, and
Roll). This system is specified as achieving approximately
1° RMS static orientation accuracy and 3° RMS dynamic
accuracy, with 150Hz maximum update rate. Although
adequate for interactive applications in virtual reality, this
accuracy is inadequate for AR tracking. To demonstrate
this, we map the specified error into the 2D image domain.

Hybrid Approach

Active-Active vision-magnetic [3]
Active-Passive magnetic-vision [18]
Active-Inertial vision-inertial [2]

acoustic-inertial [8]
Passive-Passive
Passive-Inertial compass-inertial [7][21]

vision-inertial*
Inertial-Inertial
Table 1 – Examples of hybrid tracking
approaches (including *this work)



Let ( xf , yf ) be the effective horizontal and vertical focal

lengths of a video camera (in pixels), ( xL , yL ) represent

the horizontal and vertical image resolutions, and ( yx θθ , )

be the field-of-view (FOV) of the camera, respectively. If
pixels sample the rotation angles uniformly (Yaw and
Pitch), the ratio of image pixel motion to the rotation
angles (pixel/degree) is
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To illustrate a concrete example of this relationship,
consider the Sony XC-999 CCD video camera with F
1:1.4, 6 mm lens. Through calibration, we determine the
effective horizontal and vertical focal lengths as

xf =614.059 pixels, and yf =608.094 pixels, with a

640×480 image resolution. The ratios are xxL θ =11.625

pixel/degree, and yyL θ =11.143 pixel/degree.  That is,

each degree of orientation angle error results in about 11-
pixels of alignment error in the image plane. In our actual
use experience, the error of the inertial tracker may
become larger than the specified one-degree. Increasing
the FOV of the camera by using a wide-angle lens reduces
the pixel error proportionately, however wide-angle
lenses produce significant radial distortions that also
contribute to pixel error [3].

Figure 1 illustrates the dynamic accuracy we measured
experimentally with the inertial tracker. In our
experiment, the 3DOF inertial gyro sensor is attached to a
video camera to continually report the camera orientation.
We do not attempt to measure a ground-truth absolute
pose of the sensor/camera, rather we track visual feature
motions to evaluate the gyro sensor accuracy relative to
the image. By back-projecting the 3D orientation changes
reported by the inertial sensor, we compare the gyro
motion estimates with the observed feature motions in the
image plane. Changes in the image-space distances are
proportional to the errors accumulated by the inertial
system. We believe this method simulates an AR system
annotating visual features. The experiment allows us to
evaluate the tracking of orientation-only inertial sensors.
The error measure is appropriate since the ultimate metric
of any augmented reality is the perceived image. Two
kind sequences, a far-view (>100 feet) and near-view*

                                                          
* We only consider pure rotation of the camera.  Although we carefully
pan the camera to avoid translations, minor translation is injected by the
offset between the rotation axis and the optical center of the camera. For
completeness, we consider both a far-view (campus) scene with feature
ranges of over 100 feet and a near-view (office) scene that is more
sensitive to minor translation.

(Figure 3 (a), (b)), each of 500 frames, are used for the test.
Figure 1 illustrates the average error distributions for the
two scenes. It clearly shows the dynamic drifts between the
gyro data and tracked features.

3. Hybrid Inertial-Vision Tracking

Our prototype hybrid tracker fuses inertial orientation
(3DOF) data with vision feature tracking to stabilize
performance and correct inertial drift. We treat the fusion
as an image stabilization problem. Approximate 2D
feature-motion is derived from the inertial data, and vision
feature tracking corrects and refines these estimates in the
image domain. Furthermore, the inertial data also serves as
an aid to the vision tracking by reducing the search space
and providing tolerance to interruptions.

While our current experiments focus on a hybrid of 3DOF
inertial and vision-based technologies, the methods are
useful for 6FOF systems incorporating Gyros as well as
other sensors such as accelerometers, GPS, compass, and
pedometer measurements.

(a) Far-view scene

(b) Near-view scene

Fig. 1 – Average pixel differences between
tracked features and backprojected features
for Fig.3 (a) distant and Fig. 3 (b) near scenes.



3.1 Camera Model and Coordinates

The configuration of our system includes a CCD video
camera with a rigidly mounted 3DOF inertial sensor.
There are four principal coordinate systems, as illustrated
in Figure 2: the world coordinate system

),,(: zww zyxW , the camera-centered coordinate system

),,(: ccc zyxC , the inertial-centered coordinate system

),,(: III zyxI , and the 2D image coordinate system

),(: uu yxU .

A pinhole camera models the imaging process. The origin
of C is at the projection center of camera. The
transformation from W to C is
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where the rotation matrix wcR  and the translation vector

wcT  characterize the orientation and position of the

camera with respect to the world coordinate frame. Under
perspective projection, the transformation from W to U is

W :→ U :
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where the matrix K
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contains the intrinsic parameters of the camera*, f is the

focal length of camera, yx αα ,  are the horizontal and

vertical pixel sizes on the imaging plane, and ( )00 ,vu  is the

projection of camera center (principal point) on the image
plane. The intrinsic parameters are calibrated offline.

Camera orientation changes are reported by the inertial
tracker, so the transformation between the C and I is
needed to relate inertial and camera motion.  For rotation

cIR  and translation cIT the transformation is
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Since we only use the 3DOF orientation motion of the
inertial tracker, only the rotation transformation needs to be
determined. Our automatic calibration method is detailed
below.

3.2 Static Calibration

3.2.1  Camera Parameters

Camera calibration determines the intrinsic parameters K
and the lens distortion parameters.  We use the method
described in [13]. A planar target with a known grid pattern
is imaged at measured offsets along the viewing direction.
The intrinsic parameters and coefficients of radial lens
distortion are computed by an iterative least-squares
estimation. These parameters remain constant during our
tracking experiments.

3.2.2  Transformation Between Inertial Frame and
Camera Frame

The transformation between the inertial and the camera
coordinate systems relates the inertial data to the camera
motion, and hence to the image feature motions. Measuring
this transformation is difficult, especially with optical see-
through display systems [1]. We describe a motion-based
calibration, as opposed to the boresight techniques
presented in [2, 3]. For previously stated reasons, only the
rotation component of the transformation needs to be
determined.

Equation (5) relates the position transformation between
the inertial tracker frame and the camera coordinate frame.
The rotation motion relationship between the two
coordinates can be derived

ωC = R Ic[ ]ωI  (6)

                                                          
* For simplicity we omitted the lens distortion parameters from the
equation.  A complete form can be found in [13] for the method we used.

Fig. 2 - Camera model and the related
coordinate systems of the hybrid system.



where, Cω  and Iω  denote the angular velocity of scene

points, relative to the camera coordinate frame and the
inertial coordinate frame, respectively.

The angular motion Iω , relative to the inertial coordinate

system, is obtained from the inertial tracker output.  We
need to compute the camera's angular velocity Cω in some

way, in order to determine the transformation matrix

cIR based on equation (6).

General camera motion can be decomposed into a linear

translation [ ]Tzyx VVV CCCCV ,,,=  and an angular motion

[ ]Tzyx CCCC ωωωω ,,= . Under perspective projection, the

2D-image motion resulting from camera motion can be
written as
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where ),( uu yx &&  denotes the image velocity of point

),( uu yx  in the image plane, Cz is the range to that point,

and f is the focal length of camera. Eliminating the

translation term and substituting from equation (6), we
have

˙ x u = Λ R Ic[ ] ω I (8)
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In words, given knowledge of the internal camera
parameters, the inertial tracking data Iω , and the related

2D motions [ ]yu yx && , of a set of image features, the

transformation cIR between the camera and the inertial

coordinate systems can be determined from equation (8).
This approach can also be used to calibrate the translation
component of position tracking devices.

3.3 Dynamic Registration

The static registration procedure described above
establishes a good initial calibration, however the inertial
tracker accumulates drift over time and errors with
motion. The distribution of drift and error is difficult to
model for analytic correction. Our strategy of dynamic
registration is to minimize the tracking error in the image
plane, relative to the visually-perceived image.

Suppose N points are annotated in the scene. Their
projections in the image are ),( ii yx , Ni L2,1= . Our goal

is to automatically track these features as the camera moves
in the following frames. Our method computes a tracking
prediction from the inertial data, followed by a tracking
correction with vision.

3.3.1 Tracking Prediction

Let Cω  be the camera rotation from frame )1,( −tI x  to

frame ),( tI x .  For the scene points iO , their 2D positions

in the image frame 1−t are T
tititi yx ],[ 111 −−− =x . The

positions of these points in the frame t , due to the related
motion (rotation) between the camera and the scene, can be
estimated

x it = x it −1 +∆ x i t

∆ x it = Λ ω C                                     (9)

where, Λ is determined by equation (8).

3.3.2 Tracking Correction

Inertial data predicts the motion of image features. The
correction refines these predicted image positions by doing
local searches for the true features. A robust motion
tracking approach is used for the correction strategy. The
novel part of the approach [16] is it integrates three motion
analysis functions, feature selection, tracking, and
verification, in a closed-loop cooperative manner to copy
with complicated imaging conditions. Firstly, in the feature
selection module, 0D and 2D tracking features are selected
for their reliable tracking and motion estimation suitability.
The selection and evaluation processes also use data from a
tracking evaluation function that measures the confidence
of the last tracking estimation.

Once selected, features are ranked according to their
evaluation values and fed into the tracking module. The
tracking method is a differential-based local optical-flow
calculation that utilizes normal-motion information in local
neighborhoods to perform a least-squares minimization to
find the best fit to motion vectors. Unlike traditional single-
stage implementations, the approach adopts a multi-stage
robust estimation strategy. For every estimated result, a
verification and evaluation metric assesses the confidence
of the estimation. If the estimation confidence is poor, the
result is refined iteratively until the estimation error
converges.

To achieve robust tracking, a novel motion verification and
feedback strategy is proposed in a closed-loop tracking
architecture. Two different verification strategies are used
for the two kinds of tracking features and motion models.
Basically, in both case, they depend on the estimated
motion field to generation an evaluation frame that



measures the estimation residual. The difference between
the evaluation frame and the true target frame measures
the error of the estimate. This error information is fed
back to the tracking module for motion correction and to
the feature detection module for feature re-evaluation.
The closed-loop control of the tracking system is inspired
by the use of feedback for stabilizing errors in non-linear
control system. The process acts as “selection-hypothesis-
verification-correction” strategy that make it possible to
discriminate between good and poor estimation features,
which maximizes the quality of the final motion
estimation.

4. Results

We have conducted extensive experiments to test the
proposed fusion approach. Two prototype systems have
been built, one is based on the InterSense's 3DOF inertial
tracker (Model IS-300), and another is based on a hybrid
3DOF sensors system developed by HRL Laboratories
[21]. The current fusion systems achieve about 9
frames/second on a SGI O2 workstation. Figure 3 shows
three frames from video sequences captured from three
different geographical locations. In these frames, black
dots identify the feature points that we want to track and
annotate. The yellow boxes are annotation text banners
positioned only with inertial data (fused output of each
tracker), while the red boxes denote the vision-corrected
positions. The resolution of the images is 640x480.

4.1. Inertial-Only Tracking

In this test, only inertial data is used for tracking. Ten
distinct features are manually selected in initial frames to
establish visual reference points. The selected features are
backprojected in each frame based on the camera
orientation reported by the inertial tracker. The average
differences between the backprojected image positions
and the observed (vison-tracked) feature positions are the
measure of tracking accuracy in each frame. Figures 4
illustrate the average error distributions for the three
scenes confirming that substantial errors occur.

4.2. Hybrid Inertial-Vision: case 1

This test performs inertial tracking with vision correction
of the integrated gyro error. As described in section 3.3,
the predication of 2D image motion is based on the
motion equation (9). This test corrects a feature's motion
based on its integrated inertial predicted position. This
approach has the disadvantage that inertial drift
accumulates, however the drift is unaffected by any errors
in the correction process, and this simulates the effect of
prolonged occlusion of the vision system. This test shows
how well the method corrects the accumulated gyro drifts

(a) Campus scene

(b) Office scene

(c) Pepperdine University scene

Fig. 3 – Virtual labels annotated over landmarks for
three video sequences showing vision-corrected  (red
labels), and inertial only (yellow labels) tracking results.
Note: (a) and (b) are based on InterSense’s IS-300
inertial tracker, while (c) uses HRL’s hybrid tracker.



over long periods of time. Figure 4 illustrates the results
for the test scenes.

4.3. Hybrid Inertial-Vision: case 2

The alternative error correction is incremental correction.
In this case, each correction results in an adjustment of
the gyro state, consequently, the gyro error accumulation
(for perfect corrections) is limited to periods between
corrections. The reduced period of drift integration often
results in lower accumulated error and better registration
as illustrated in figure 4. A drawback of this approach is
the possibility that a spurious correction error produces a
lingering bias in the result.

5. Conclusions

We presented a hybrid approach for AR registration with
integrated inertial and vision tracking technologies.
Inertial tracking has advantages of robustness, range, and
a system that is passive and self-contained. Its major
disadvantage is its lack of accuracy and drift over time.
Vision tracking is accurate over long periods, but it
suffers from occlusion and computation expense. We
exploit the complementary nature of these two tracking
technologies to compensate for the weakness in each
separate component.

We quantitatively analyzed the sensitivities of orientation
tracking error. To integrate the inertial and vision
subsystems, accurate calibration of the two coordinate
systems is critical, and we presented a motion based
registration method that automatically computes the
orientation transformation.

We applied vision corrections to both the accumulated
and the incremental gyro error, and we presented our test
results for two image sequences.
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(a) Campus sequence

(b) Office sequence
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