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We present TWINS (TWo INclining Slits), a method for characterizing phase spatial light modulators (SLMs),
inspired by Young interferometry. TWINS is an elegant and versatile approach, using minimal equipment and
alignment. It measures phase response locally rather than globally, both horizontally and vertically, with high
resolution and at wide angles. It can also measure beam intensity profiles as directly seen by the SLM. TWINS
characterizes the anisotropic aberrations in the mainstream models of liquid crystal phase SLMs, which is crucial
to improve hologram quality. Compensating for anisotropic aberrations measured by TWINS improved the image
quality of planar holograms by 10 dB. ©2023Optica PublishingGroup

https://doi.org/10.1364/AO.499387

1. INTRODUCTION

Holographic projectors based on phase-only spatial light mod-
ulators (SLMs) have rapidly improved in the past 5 years, in
both the SLM hardware and the algorithms that compute the
holographic images and characterize the system. Holographic
projection offers many benefits, such as virtually unlimited
brightness, very high dynamic range, and wavefront shaping
capabilities that enable lightweight devices with minimal physi-
cal optics to change optical characteristics (e.g., focal distance)
programmatically. These advantages are crucial to applications
such as AR and VR headsets, automobile head-up displays,
portable surface-adaptive projectors, and dynamic digital signs.
However, generating high quality holographic images requires
measuring and compensating for imperfections in real devices,
such as the phase response, beam amplitude profile, and system
phase aberrations. Characterizing actual devices is a complex
task, often requiring extra optical elements, time-consuming
alignments, and many manual steps. In this paper, we introduce
TWINS (TWo INclining Slits), a technique inspired by Young
interferometry. TWINS is an elegant and versatile method offer-
ing four major benefits. First, it is a spatially local method that
measures phase response at 10–20 pixels resolution and wide
field of view (FOV), both horizontally and vertically, measuring
anisotropic aberrations. Local measurements do not require
camera image to SLM registration. Second, it measures beam
profiles directly on the SLM. Third, it is easy to implement,
requiring only a camera for usages with a diffusive projection
screen. Fourth, using our new method, we show a 10 dB gain
in image quality over existing state-of-the-art characterization
approaches.

2. RELATED WORK

There are multiple works on phase SLM calibration [1–12].
All have their pros and cons with respect to a given applica-
tion. Methods using interferometers, such as Twyman–Green,
Michelson, or Mach–Zehnder [2–5,11], achieve high accuracy
and solve multiple problems. For example, [11] recovers static
aberrations, and [3] acquires spatially varying phase response.
The need for extra optical elements, often of high quality, precise
alignment, and specific placement of the SLM in the light path,
makes them less attractive for quick iterations of experimenting
with visual holographic systems. Also, they characterize the
SLM in isolation from its target system or application. Methods
using the SLM to produce an interference pattern observed
by a photodiode or camera, such as self-reference, are easier to
use, require minimal additional equipment, and produce good
results for visual applications. Some detect intensity changes
due to varying diffraction efficiency caused by phase differences
[9]. Other approaches include a grating-piston method [7],
a subsequent work [8] addressing vibrations, a multi-beam
method [12], and a temperature-dependent characterization
[10]. Easy-to-use methods [7,8,12] operate in the small target
cross-section area of the collimated beam directly reflected by
the SLM surface and cannot cover the full FOV defined by the
maximum diffraction angle of the SLM. Local methods often
rely on precise camera image to SLM pixels registration.

Recent advances in algorithms that compute holograms pro-
duce nearly perfect results on simulated idealized systems and
attempt to optimize holograms for real holographic display sys-
tems. Wirtinger holography [13] triggered rapid development
of phase retrieval algorithms based on deep learning tools with
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auto-differentiation, made widely available by packages such
as PyTorch [14]. Neural holography [15] and hardware-in-the-
loop [16] methods extend this approach to characterize an entire
real holographic display system with aberrations via a neural
network trained on holographic images captured by a camera
that are registered and compared against target images. While
showing impressive results, they are limited to convolutional
regime holograms (such as angular spectrum propagation),
are not easily extendable to the far field, and do not tell the
user how to calibrate individual components such as the phase
response of the SLM. In practice, the image quality of planar
visual holograms in the far field depends heavily on accurately
characterizing the phase response and the beam profile. Both
are usually far from ideal, resulting in image degradation and
speckle noise.

3. TWINS METHOD

A. Young’s Interferometer Experiment

In the 19th century, Thomas Young’s famous double-slit exper-
iment showed that coherent monochromatic light passing
through two narrow slits creates a characteristic fringe pattern,
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due to far field diffraction. This intensity pattern has distances
between fringes proportional to the wavelength and inversely
proportional to the distance between the slits.
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distance d with constant phase shifts ϕ1 and ϕ2 at each slit (like
the tilted beam case [17]) is subject to a cosine distribution,
shifted proportionally to the phase difference, with sinc-squared
fall-off (refer to Supplement 1):
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This intensity pattern, with a distinctive carrier frequency,

enables Fourier analysis to extract the phase difference by follow-
ing the recipe from [7]. Numerical simulation shows that Eq. (1)
holds for both Fraunhofer (image at optical infinity) and free
space Fresnel far field approximations (finite distance, 2D FFT
of the SLM optical field with added distance-based quadratic
phase). Thus, two practical implementations of the method

are possible: when an image is projected by a lens onto a CCD
sensor placed at the focal plane, or when an image is projected on
a diffuse screen directly by the SLM. The latter setup supports
off-axis and on-axis illumination and a broad range of distances
between SLM and the screen, covering our application domains
(we tested several distances between 0.5 and 1.1 m).

B. TWINS: Extending Young’s Interferometer for
Phase SLM Characterization

Using physical masks with narrow slits causes problems with
lighting and alignment, so we instead create programmable phase
slits: setting slit-like groups of pixels on the SLM to different
constant phase levels, where these differ from the background.
However, we discovered important differences between physical
masks and programmable phase slits.

First, the fringes created by programmable phase slits on an
SLM experience half the lateral shift of that created by the physical
mask. To show that, we take the Fourier transform of the source
plane optical field, where a SLM of size W has background phase
shift ϕ0 and two parallel narrow rectangles (phase slits) with
additional phase shifts ofϕ1 andϕ2:

The last term in the curly brackets is the zeroth order spot,
and the fringe pattern is defined by the expression inside the
square brackets, which using [18] can be re-written:

According to Eq. (3), the intensity of the fringe pattern of
programmable phase slits has cosine distribution with fringes
shifted exactly by half of the phase difference between slits. The
contrast depends highly on the difference between the phase
values in the slits and in the background. Therefore, adjusting
background phase can maximize contrast.

Second, since the entire SLM surface modulates light, the far
field image is contaminated by a zeroth-order spot and effects
of static phase aberrations. These appear as a relatively bright
cross shape in the center of the image. Although optical infinity
and finite distance setups are affected differently, these problems
render images located close to the central axes useless (see Fig. 1
for a real image). To solve this problem, we shift the far field fringe
pattern away from the central axes by introducing a binary diffrac-
tion grating pattern inside the slits (Fig. 2). To ensure consistent
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Fig. 1. TWINS fringe pattern image, averaged and filtered cross-section, and its FFT.

Fig. 2. Left: hologram with measurement slits (red outline) and reference slits (green outline). Right: simulated far field image of the hologram
with intensity charts.

patterns and phase shifts, the periods of the gratings are the same
for both slits, where the “off” pixels of the grating are set to a
common phase value, while “on” pixels are set to the measured
phase difference.

Because such narrow grating patterns act like double slits dif-
fracting light away from the central axis, we refer to our method
as TWo INclining Slits, or TWINS.

To measure differences in the phase produced by gray levels
G0 and G1, we set “on” pixels to G0 in one slit and to G1 in
another, with “off” pixels in both slits to a common level G con.
The phase produced by level G con should have sufficient con-
trast with phases from G0 and G1 to make the fringe pattern in
the +1, −1 orders bright. For example, for an SLM with 256
phase levels, G con can be around G0+ 128. Please refer to the
slits in the red outline in Fig. 2.

To measure a phase response curve at one location on the
SLM, we set G0= 0 and iterate over the entire grayscale range
with G1 ∈ [1, Gmax]. One more modification is needed to avoid
the fringe pattern disappearing when G1 is close to G con (so
the grating stops working). We change G0 every Nhop incre-
ments of G1 to G0= G0+ Nhop and update G con to the new
G0+ 128. We call this modification base hopping because it
changes the base level G0. Every Nhop measurement reconstructs
part of the response curve. We assemble the adjacent parts to
generate the full response curve, starting from the first piece.

Predicting where the fringe pattern appears as viewed by the
detector camera in a real system is difficult, so the user views and
manually specifies the approximate location of the first observed
pattern. Due to the approximate selection, measurements con-
tain an additional constant phase shift that we eliminate for each
new hop by measuring the phase for both slits set to G0, Gcon

and subtracting that from all subsequent measurements in the
hop.

TWINS is a spatially local method that detects anisotropic
phase response. We can move the slits across the SLM in a finely
spaced grid pattern to measure phase response in detail across
most of the SLM. We can also orient the slits vertically or hori-
zontally. This detects anisotropic phase response characteristics
common in liquid crystal (LC) SLMs.

C. Vibration Compensation and Noise Filtering

TWINS is resilient to many noise sources but is susceptible
to vibrations, due to accumulating error when assembling the
response curve in base hopping. Vibrations are most noticeable
at finite distances when the screen is relatively far from the cam-
era or at optical infinity, when the sensor and projection lens
are not rigidly connected to the SLM. We solve this problem
by using an auxiliary pair of reference slits (marked by a green
outline in Fig. 2) located away from the measurement slits to
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minimize interference between them. We typically place ref-
erence slits approximately half of the SLM width/height away
from the measurement slits (marked by a red outline in Fig. 2).
If the width, length, and spacing of both slit pairs are the same,
then the far field image produced by two pairs of slits placed on a
constant background will contain two distinctive sets of similar
fringe patterns with the same carrier frequency (see Fig. 2, right).
Both reference slits “on” and “off” levels are set to some constant
values G ref, G ref +C (C is added to have a contrast phase with
G ref). At each measurement step, the phase extracted by Fourier
analysis from the reference slit encodes a constant shift plus
shifts due to vibration. We can directly subtract the vibration
component of the reference phase from the measurement.

If the SLM is physically too small to make the measurement
and reference patterns clearly distinguishable, then we provide
a different period to the reference slit gratings so the reference
fringe pattern will have different diffraction angles from the
measurement’s. Figures 3 and 4 show the efficiency of vibration
compensation in both simulation and a real environment.

In practice, the slits are very small, so the fringe patterns
contain significant noise, including speckle. We mitigate the
problem with two additional steps. First, instead of using one
central cross-section line of the fringe pattern, we average multi-
ple lines (up to 10) around it. Based on extensive simulation, the
precision of phase response recovery due to averaging is practi-
cally unaffected (error< 1%). Second, we filter the 1D intensity
curve generated by averaging before performing Fourier analysis
to eliminate effects of speckle noise.

4. ANALYSIS

A. Phase Response Measurement

We use an electrically controlled birefringence (ECB) device
with parallel alignment direct voltage driven liquid crystal on
silicon (LCoS) phase SLM in a setup detailed in Section 5. The
display projects onto a white diffuse screen 1.1 m away from
the SLM. We compared phase response curves measured by
TWINS with [8] (the vibration compensated variant of [7]).
Figure 5 shows the results. When TWINS slits are oriented
orthogonal to the rubbing direction [Fig. 5(b)], the curves are
very similar to those collected with the global method [8]. There
is a slight difference between the curves for the +1 and −1
orders, but the mean curve is very similar, providing comparable
improvements in the far field holographic images. The differ-
ence comes from three key differences of TWINS and [8]. First,
TWINS is a spatially local method measuring phase differences
between small groups of pixels, while [8] is a global method
measuring cumulative differences for a quarter of the SLM.
Second, the fringe period expressed in CCD pixels is larger
for TWINS, so the resolution is different. Third, TWINS can
measure phase modulation performance at wider FOVs than
[7,8], which we will show is crucially important for LC-based
SLMs.

B. Angular Phase Anisotropy of an ECB LCoS Phase
SLM

A typical parallel alignment ECB LCoS SLM in rest state has
LC molecules arranged almost parallel to the rubbing direction.

Fig. 3. Simulated phase response measurement by TWINS with emulated vibrations. (a) TWINS simulation, ground truth phase response.
(b) TWINS simulation with no vibration compensation, recovered phase response. (c) TWINS simulation with vibration compensation, recovered
phase response.

Fig. 4. 30 phase response measurements by TWINS on real setup. (a) 30 real setup experiments with no vibration compensation, recovered phase
response. (b) 30 real setup experiments with vibration compensation, recovered phase response.
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Fig. 5. Phase response measurement: (a) baseline using [7,8], (b) using horizontal TWINS, and (c) vertical TWINS (diffracted along rubbing
direction).

Fig. 6. Modeling anisotropic phase response: (a) simplified LCoS pixel model, (b) phase modulation response, and (c) phase response variation at
each LC angle (each voltage level).

Applying voltage rotates the molecules out of the SLM plane,
but they remain parallel to each other [Fig. 6(a)]. Light passing
through an LC layer in different directions experiences different
phase delays, depending on the angle between the propagation
direction and the LC molecules. This property is known for
limiting viewing angles in LC monitors, but it also reduces the
image quality of holograms. Simulating LC cells in an analytical
model [19] gives an estimate of the angular anisotropy of phase
modulation. We modeled a hypothetical 4 um thick LC cell
with extraordinary and ordinary indices equal to 1.9135 and
1.535, respectively, assuming light pierces it at a constant angle.
Figure 6(b) shows the phase modulation for different orien-
tations of LC molecules at different incidence angles of light.
To visualize anisotropy in phase modulation in Fig. 6(c), we
subtract the minimum phase delay value for every LC molecule
rotation angle (every fixed voltage level). The range of incidence
angles exactly corresponds to a maximum diffraction angle of an
SLM with pixel pitch of 4.25 µm. The phase modulation for a
fixed voltage can vary substantially with light direction.

Angular phase modulation anisotropy affects far field
holograms, even with perfectly collimated light arriving
perpendicular to the SLM surface, because light enters and
leaves the SLM in different directions, due to diffraction from the
holographic features and propagation through the LC layers.

TWINS detects and measures anisotropic phase modu-
lation along the SLM X and Y directions by using vertical or
horizontal slits. In each orientation, TWINS measures phase
modulation along six different angles, by using slit gratings of
periods 2, 4, and 6 pixels and detecting the +1 and −1 orders

for each period. Since molecules rotate in planes orthogonal to
the SLM surface along the rubbing direction, the difference in
phase modulation is largest when light is diffracted along the
rubbing direction. Figures 5(b) and 5(c) show the six response
curves collected using TWINS with slits oriented horizontally
along the X axis and vertically along the SLM Y axis (rubbing
direction). As expected, light diffracted along the rubbing direc-
tion [Fig. 5(c)] shows substantial differences in modulation,
while light diffracted along the X axis [Fig. 5(b)] shows small
differences. The horizontal off-axis light source, combined with
a small in-plane rotation of the SLM in its mount, explains the
horizontal anisotropic response.

We now evaluate the benefits of TWINS in holography by
comparing the holograms optimized with a conventional phase
modulation model (isotropic) against holograms optimized
with a directional phase modulation model (anisotropic).
Images from both hologram types were produced using aniso-
tropic modulation measured by TWINS. Our hardware allows
editing voltage lookup tables (LUTs), and we used TWINS
to fine-tune the factory LUT to achieve full 2π range in the
SLM normal direction. We used a novel hologram computation
method producing “anisotropic holograms” to evaluate com-
pensating for anisotropic aberrations measured by TWINS. We
modified the Fresnel approximation of the far field integral to
use different modulation curves in the vertical direction, since
only the vertical direction (the rubbing direction) is noticeably
affected by directional anisotropy. To model phase variation in
all vertical directions, we linearly interpolate the six measured
response curves along the vertical direction to get response
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Table 1. PSNR of Images Produced by Combinations
of Computed Hologram and Directional Phase
Calibration

Fine-Tuned LUT Factory LUT

Hologram type: Isotropic Anisotropic Isotropic Anisotropic

HUD 20 22.7 33.2 16.6 25.2
HUD 28 26.6 39.3 18.4 27.9
Nature 1 22.0 32.2 14.0 23.3

curves for all target angles. See Section 5 for implementation
details.

Table 1 summarizes the results. We computed three holo-
grams, called HUD 20, HUD 28, and Nature 1. They were
displayed with TWINS phase calibration (fine-tuned LUT) or
the original SLM calibration (factory LUT), and with the holo-
gram computed for isotropic aberrations (the regular Wirtinger
approach) or our anisotropic hologram. In all cases, these were
displayed on an LCoS system with anisotropic phase response.

First, anisotropic aberrations have a major effect on holo-
graphic image quality. Holograms computed by standard
Wirtinger holography and displayed on an ideal, simulated
holographic display with no anisotropic aberrations result
in nearly perfect images, with PSNRs above 40 or 50. But
in Table 1, standard Wirtinger holograms (the two isotropic
columns) result in PSNRs in the teens or 20’s. State-of-the-art
hologram computations are severely degraded when displayed on a
real LC holographic display with anisotropic aberrations.

Second, compensating for anisotropic aberrations, which
TWINS enabled, improves the holographic image quality by over
10 dB. This is seen by comparing the isotropic and anisotropic
columns for the fine-tuned LUT condition. Figure 7, left,
shows low brightness and noise artifacts in the upper and lower

image areas of a traditional isotropic hologram on anisotropic
hardware. Our novel anisotropic holograms reclaim diffrac-
tion efficiency and reduce noise (Fig. 7, right). Please refer to
Supplement 1 for more examples.

Third, we must combine the benefits from TWINS in both phase
modulation and anisotropic hologram computation to achieve
the best results. The anisotropic hologram displayed with the
factory LUT does not reach a PSNR of 30. This shows the LUT
is also crucial. The TWINS method shows the factory LUT
produces phase outputs with a range below 2π across over 50%
of directions, which explains the reduced performance.

C. Measuring Beam Intensity Profile

Accurately measuring and compensating for the beam intensity
profile noticeably reduces speckle noise in far field holography.
While many external devices can measure beam profiles, their
use requires calibration to find the correspondence between
SLM pixels and the external device’s measurements. As a
basis for comparison, we consider a “scanning phase grating”
approach that generates a grating, 64× 64 pixels or larger, that
diffracts a beam off the SLM onto a lens focused on a photo-
diode connected to an oscilloscope. The grating is “scanned”
across the SLM in a grid-like pattern to measure the profile at
different positions on the SLM.

In contrast, TWINS measures the beam intensity profile
directly on the SLM without an external photodiode or oscillo-
scope. Since the TWINS fringe pattern intensity is proportional
to the intensity of the beam illuminating the SLM, we can meas-
ure beam intensity by extracting the amplitude of the projected
pattern at the carrier frequency. “Scanning TWINS” moves
the slits in a grid-like pattern across the SLM, but since the slits
are smaller than the pattern in the “scanning phase grating”
approach, the resolution is higher. We use slits 64 pixels tall,

Fig. 7. Isotropic (left) and anisotropic (right) hologram (top) of image Nature 1 on anisotropic LCoS with absolute error maps (bottom).

https://doi.org/10.6084/m9.figshare.24178404
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Fig. 8. Beam profile using scanning grating and photodiode (left) and using vertical TWINS (right).

three pixels wide, and spaced 12 pixels apart. The “scanning
TWINS” method requires identifying the area on the diffuse
screen to capture, which is done by identifying the projected
positions from slits at two opposite corners of the SLM, and
the capture window for each position in the grid is interpolated
from these extremes.

To get the best resolution of intensity values, we use 12-bit
grayscale pixels on the capture camera, adjust the exposure to
cover the minimum and maximum intensities, and trigger the
camera on the rising edge of the laser beam’s “on” signal. The
beam intensity profile generated by “scanning TWINS” is very
similar to the profile from the “scanning phase grating” method
(Fig. 8).

5. IMPLEMENTATION DETAILS

We conducted experiments with a Himax 1920× 1080 analog
LCOS SLM based on HX7322 [20]. The SLM has 4.25 µm
pixels and 256 phase levels covering a range of [0, 2π ]. The light
source is a red 630 nm LED driven by FISBA ReadyBeam and a
Thorlabs 2” achromatic collimator, mounted 4.4◦ horizontally
off axis. Linear polarization of the light is matched with the
SLM’s rubbing direction. A white diffuse screen was placed at
distances between 0.5 and 1.1 m. A Basler a2A5320-23umPRO
global shutter camera with 35 mm F/1.8 C-mount low dis-
tortion lens captured the projected image on that screen. We
attached a small square of black velvet paper to the screen at
the location of the zeroth-order spot to prevent sub-surface
scattering.

The characterization code runs in MATLAB, generating
SLM phase holograms, capturing and processing projected
images. A C++ extension displayed holograms on the SLM. We
implemented Wirtinger hologram computation in Python,
where a PyTorch auto-diff module uses an anisotropic model
rather than isotropic, leveraging GPU acceleration in PyTorch.

We modify the Fresnel diffraction integral adding vertically
anisotropic phase modulation:

U(x1, y1, z)=Czexp

[
ik
2z

(
x 2

1 + y 2
1

)] ∫∫ +∞
−∞

B (x0, y0) exp(i Pm[P (x0, y0) , y0, y1])

× exp

[
ik
2z

(
x 2

0 + y 2
0

)]
exp

[
ik
z
(−x0x1 − y0 y1)

]
dx1dy1. (4)

Using the Adam optimizer, we minimize image error search-
ing for proxy phase hologram P (x0, y0), subject to vertically
anisotropic mapping Pmap[P (x0, y0), y0, y1] transforming
SLM phase depending on coordinates y0, y1. When computing
Eq. (4) with 2D summation using far field FFT-compatible
discretization, we use less expensive 1D FFT along the X axis.
To ensure the proxy hologram P (x0, y0) fits within the SLM
grayscale range, Pmap wraps it around 2π .

6. LIMITATIONS AND FUTURE WORK

TWINS requires a good external camera with a sensor that cap-
tures 12-bit grayscale pixels and a low distortion lens. The gener-
ated fringe pattern is dim due to the limited number of pixels in
the double slits, so this method requires a bright light source. By
design, TWINS uses small groups of pixels, which in LC SLMs
are vulnerable to fringe fields that smooth the phase. It is difficult
to estimate the impact of that smoothing.

The biggest current limitation is that TWINS detects phase
relative to the initial phase in the slits and there is no stitching
mechanism in place. So, it cannot reliably replace methods
measuring static aberrations, such as [10]. In theory and in sim-
ulations, a scanning TWINS approach can measure static phase
curvature across the SLM. However, a practical implementation
requires knowing the exact effect of scanning grating shifts on
the fringe pattern. In practice, any error quickly accumulates,
introducing unacceptable (> 100%) errors in the measured
phase curvature. In addition, the presence of large uncompen-
sated for static phase aberrations introduces crosstalk, affecting
measurement accuracy, so slits need to become larger (refer
to Supplement 1). We leave it to future work to determine if
a practical approach for static phase aberration measurement
using TWINS is feasible.

Compensation for anisotropic phase modulation required
using summation rather than 2D FFT operations, increasing

https://doi.org/10.6084/m9.figshare.24178404
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the computation workload due to the quadratic complexity of
summation along one axis. Auto-differentiation requires a large
memory footprint, so we needed a GPU with 24 GB of memory.
Reducing the computation through approximations is a topic
for future work.

7. CONCLUSION

TWINS is a novel, elegant, and versatile method for character-
izing phase response and beam intensity profiles of an SLM in
a holographic display system with minimal additional equip-
ment and automated data collection, making this accessible to
all users. It provides similar accuracies to previous work while
offering the advantages of measuring locally rather than glob-
ally, with high resolution and wide angles, and along several
angles both horizontally and vertically. TWINS characterizes
anisotropic distortions inherent in LCoS SLMs. Other state-
of-the-art approaches could not generate holograms with a
PSNR over 30 on hardware with anisotropic distortions. With
TWINS, we compensate for anisotropic modulation during
hologram computation, improving PSNR by 10 dB to values
over 30.
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